1	
2	
3	CLIMATIC INDICES INFLUENCING THE LONG TERM VARIABILITY
4	OF MEDITERRANEAN HEAT AND WATER FLUXES:
5	THE NORTH ATLANTIC AND MEDITERRANEAN OSCILLATIONS
6	
7	
8	Francisco Criado-Aldeanueva ⁽¹⁾ , F. Javier Soto-Navarro ⁽¹⁾ , Jesús García-Lafuente ⁽¹⁾
9	
10	(1) Physical Oceanography Group, Department of Applied Physics II, University of Málaga,
11	Málaga, Spain.
12	
13	
14	
15	
16	
17	Corresponding author:
18	Francisco Criado Aldeanueva
19	Dpto. Física Aplicada II, Universidad de Málaga
20	29071 Málaga, Spain
21	<i>Tel.:</i> +34 952 132849
22	fcaldeanueva@ctima.uma.es
23	
24	

25 CLIMATIC INDICES INFLUENCING THE LONG TERM VARIABILITY OF 26 MEDITERRANEAN HEAT AND WATER FLUXES: THE NORTH ATLANTIC 27 AND MEDITERRANEAN OSCILLATIONS

28

29 **ABSTRACT:** Interannual to interdecadal precipitation (P), evaporation (E), water 30 deficit (E-P) and total heat flux have been correlated with North Atlantic Oscillation 31 (NAO) and Mediterranean Oscillation (MO) indices to explore the influence of large-32 scale atmospheric forcing in the Mediterranean water and heat budgets variability. 33 Basin-averaged precipitation decrease from mid-60s to late-80s clearly corresponds to a 34 switch from a low to a high state of both indices. E-P variability is not so well 35 correlated with the atmospheric indices due to the different sensitiveness of E and P that 36 leads to correlations of opposite sign in the Eastern and Western sub-basins. The 37 effectiveness of NAO and MO indices is rather similar for P and E-P but the regional 38 MO index has turned out to be a more successful indicator of interdecadal evaporation 39 and net heat flux because from mid 70s to early 90s there is a considerable discrepancy 40 with NAO index. Since the MO centre remains rather steady, it influences most of the 41 Mediterranean all year round, then becoming more suitable for monitoring long term 42 water and (especially) heat budgets variability.

43

44 Keywords: Heat and water budgets, long-term variability, atmospheric forcing, climatic
45 indices, Mediterranean Sea.

46

47

48

49

INTRODUCTION

52	The Mediterranean Sea (Figure 1), a semi-enclosed basin that extends over 3000 km in
53	longitude and over 1500 km in latitude with an area of $2.5 \cdot 10^{12}$ m ² , communicates with
54	the Atlantic Ocean through the Strait of Gibraltar and with the Black Sea through the
55	Turkish Bosphorus and Dardanelles Straits. Semi-enclosed basins such as the
56	Mediterranean are suitable for the characterisation of heat and water fluxes since they
57	make a budget closure feasible. Evaporative losses (E) are not balanced by precipitation
58	(P) and river runoff (R) and an Atlantic inflow through the Strait of Gibraltar is
59	necessary to balance the freshwater and salt budgets. The circulation in the
60	Mediterranean Sea is influenced to a large extent by the heat and freshwater air-sea
61	exchanges which depend on the meteorological and oceanic conditions (Tsimplis et al.,
62	2006). The heat and water budgets play a key role in dense water formation and hence
63	in the Mediterranean Thermohaline Circulation (Bethoux et al., 1999). As a
64	consequence, they affect the characteristics of the Mediterranean water masses and then
65	may potentially influence the Atlantic Ocean circulation via changes in the properties of
66	the Mediterranean Outflow (Bethoux et al., 1999; Potter and Lozier, 2004; Artale et al.,
67	2005; Millot et al., 2006). For these reasons, the improvement of our knowledge of heat
68	and water budgets and their long-term variability is a challenge for the scientific
69	community of the Mediterranean region and is thought to be crucial to understand the
70	Mediterranean circulation and climate and their evolution under climate change.
71	
72	Approximate location of Figure 1
73	

74 A great number of studies have dealt with the Mediterranean heat (Bethoux, 1979; 75 Bunker et al., 1982; May, 1986; Garrett et al., 1993; Gilman and Garrett, 1994; Castellari et al., 1998; Matsoukas et al., 2005; Ruiz et al., 2008; Sanchez-Gomez et al., 76 77 2011; Criado-Aldeanueva et al., 2012) and water (Bethoux, 1979; Peixoto et al., 1982; Bryden and Kinder, 1991; Harzallah et al., 1993; Gilman and Garrett, 1994; Castellari et 78 79 al., 1998; Angelucci et al., 1998; Béthoux and Gentili, 1999; Boukthir and Barnier, 80 2000; Mariotti et al., 2002; Mariotti, 2010; Sanchez-Gomez et al., 2011; Criado-81 Aldeanueva et al., 2012) budgets but only in the recentmost ones, which use longer 82 datasets, the attention focused on the interannual variability and its forcing mechanisms. 83 For instance, Criado-Aldeanueva et al. (2012) report three different periods in the 84 precipitation and evaporation anomalies: from early 50s to late 60s, a positive trend is 85 observed that changes to negative until late 80s when it changes sign again. This 86 variability also reflects in the total heat flux exchanged between the ocean and 87 atmosphere and suggests a 40-year period multi-decadal oscillation related to long-term 88 atmospheric forcing that needs further investigation. 89 90 Indices of large-scale climate modes provide an integrated measure of weather linked 91 more to the overall physical variability of the system than to any individual local 92 variable. Among these indices, the North Atlantic Oscillation (NAO) is one of the most 93 prominent modes of the northern hemisphere climate variability (Walker and Bliss, 94 1932; van Loon and Rogers, 1978; Barnston and Livezey 1987; see Hurrell et al., 2003 95 for a recent review). It consists of a dipole of the sea level pressure over the North 96 Atlantic-European region with one centre reflecting the Iceland low and the other the 97 Azores high. Both phases of the NAO (stronger and weaker dipole) are associated with

98 basin-wide changes in the intensity and location of the North Atlantic jet stream and

99 storm track and in large-scale modulations of the normal patterns of zonal and

100 meridional heat and moisture transport, which in turn results in changes in temperature

101 and precipitation patterns over extended areas, including the Mediterranean sea (Walker

and Bliss 1932; van Loon and Rogers 1978; Rogers and van Loon 1979; Hurrell 1995;

103 Serreze et al., 1997; Dai et al., 1997; Mariotti et al., 2002; Mariotti and Arkin, 2007).

104 Interest in NAO has been recently renewed because a trend towards its positive phase,

105 especially in the last two or three decades, has been observed.

106

107 Although very important, NAO is not the only mode of variability of the northern 108 hemisphere: the Artic Oscillation (AO), defined as the first leading mode from the EOF 109 analysis of monthly mean height anomalies at 1000 hPa poleward of 20°N, is highly 110 correlated with NAO in the Atlantic region because of the overlap of their spatial 111 patterns in this sector and could be candidate for monitoring the large-scale atmospheric 112 forcing instead of NAO. But the results of Ambaum et al. (2002) show that the NAO 113 has a separated set of physical processes involved in its variability that makes it more 114 robust and physically relevant and has therefore been preferred for this study. 115 116 Conte et al (1989) suggested the possible existence of a Mediterranean Oscillation 117 (MO) as a consequence of the dipole behaviour of the atmosphere in the area between 118 the Western and Eastern Mediterranean. Differences in temperature, precipitation, 119 circulation and other parameters between both basins were attributed to this MO and an 120 index to measure the intensity of this dipole-like behaviour was proposed (Conte et al., 121 1989; Kutiel et al., 1996; Maheras et al., 1999; Supic et al., 2004; Suselj and Bergant, 122 2006). Some aspects of the Mediterranean climate variability have been reported to be 123 better reflected by the MO index (Supic et al., 2004), including the flow exchange

through Gibraltar (Gomis et al., 2006). More recently, Papadopoulos et al. (2012) stated
that the MO index captures to a certain extent the influence of other independent modes
of low-frequency atmospheric variability such as the East Atlantic (EA), the East
Atlantic-West Russia (EA-WR) or the Scandinavian (SCAND) patterns over the
Mediterranean and hence provides a valuable measure of the atmospheric impact on the
basin.

130

131 In contrast to NAO, that has been extensively studied, only a few previous works focus 132 on the MO index and more research is required, especially to assess its influence in heat 133 and water budgets in the Mediterranean Sea, which is the objective of this work. To this 134 aim, we correlate interannual to interdecadal precipitation, evaporation, water deficit (E-135 P) and total heat flux with atmospheric indices (NAO and MO) and perform a 136 composite analysis to establish the relative importance of their positive and negative 137 phases in the climatic variables. The work is organised as follows: section 2 describes 138 the data and methodology; section 3 presents and discuss the results both from a 139 regional and global approach and finally section 4 summarises the conclusions. 140 141 **DATA AND METHODOLOGY** 142

143 Since there is no unique way to describe the spatial structure of the NAO or MO, it

144 follows that there is no universally accepted index to describe the temporal evolution of

145 the phenomenon. Most recent NAO or MO indices are derived either from the simple

146 difference in surface pressure anomalies between various locations (Rogers, 1984;

147 Conte et al., 1989; Hurrell, 1995; Jones et al., 1997; Slonosky and Yiou, 2001; see Jones

148 et al., 2003 for a comparison between several station-based indices) or from the

149 Principal Components (PC) time series of the leading Empirical Orthogonal Function 150 (EOF) of sea level pressure or some other climate variable (Suselj and Bergant, 2006; 151 Gomis et al., 2006; Mariotti and Arkin, 2007; see Hurrell and Deser, 2010 for a review 152 of diverse methods). A disadvantage of the station-based indices is that they are fixed in 153 space and are significantly affected by small-scale and transient meteorological events 154 that introduce noise (Trenberth, 1984; Hurrell and van Loon, 1997) whereas the PC time 155 series approach is more optimal representation of the full spatial pattern (Hurrell and 156 Deser, 2010) and will be used in this work unless differently stated. 157 158 The monthly NAO index from the National Oceanic and Atmospheric Administration 159 (NOAA) Climate Prediction Center (CPC) has been retrieved. Its calculation is based on 160 the Rotated Principal Component Analysis (Barnston and Livezey, 1987) applied to 161 monthly mean standardized 500-mb height anomalies for 20°N-90°N (see 162 http://www.cpc.ncep.noaa.gov/data/teledoc/teleindcalc.shtml for a detailed description). 163 The MO pattern has been computed as the first PC mode of normalised sea level 164 pressure anomalies across the extended Mediterranean region (30°W-40°E in longitude, 165 30°N-60°N in latitude) which exhibits a single centre located over the Central and 166 Western Mediterranean (Figure 1), fairly steady in all seasons. The MO index is then 167 obtained as the corresponding time coefficients of the first PC mode. Since we define 168 the positive phase when sea level pressure anomaly above the Mediterranean is positive, 169 MO and NAO indices are positively correlated.

170

171 Monthly means from January 1948 to February 2009 of precipitation, evaporation and

172 surface heat fluxes have been retrieved from the National Center for Environmental

173 Prediction-National Center of Atmospheric Research (NCEP-NCAR) reanalysis project

174 (NCEP hereinafter, Kalnay et al., 1996), which is run at T62 spectral resolution 175 (approximately a grid size of 1.9°x1.9°) with 28 sigma levels. Auxiliary data of monthly 176 mean sea level pressure and air temperature at 2.5°x2.5° for the period 1948-2009 have 177 also been retrieved from NCEP database. Despite the uncertainties derived from the use 178 of reanalysis, Mariotti et al. (2002) showed that NCEP data exhibit good agreement 179 when compared with observational datasets at interannual to inter-decadal time scales in 180 the Mediterranean area. Moreover, the use of reanalysis allows the construction of 181 homogeneous time series (both in time and space), this leading to a better representation 182 of the basin-scale structures, which are the aim of this work. Seasonal means have been 183 computed by averaging JFM (winter), AMJ (spring), JAS (summer) and OND (autumn) 184 monthly data and Mediterranean spatially-averaged time series have been obtained by 185 averaging all grid points over the sea.

186

187 Linear correlation maps have been used to identify coupled patterns between the 188 climatic variables and the atmospheric NAO and MO indices. The statistical 189 significance of the correlation has been computed by transforming the correlation 190 matrix in a *t*-student distribution with N-2 degrees of freedom, where N is the number 191 of element of the analysed time series. Time filtering into low and high frequency 192 components is achieved using a 5-year running mean to take into account the long time 193 scale effects of the indices. Linear regression has also been used to quantify NAO (and 194 MO) related anomalies of the climatic variables. A complementary composite analysis 195 has also been performed to add robustness to the correlation results and highlight the 196 asymmetries between the positive and negative phases of the indices. First, we select 197 those years in which NAO and MO indices are in the upper (positive phase) and lower 198 (negative phase) quartiles over the period 1948-2009 and analyse their influence in the

199	climatic variables in terms of the average standard deviation anomalies during both
200	phases with respect to the complete time series on each grid point (Mariotti and Arkin,
201	2007). Only the points where the results are statistically different from zero (according
202	to a <i>t</i> -Student test at 95% significance) have been represented.
203	
204	RESULTS AND DISCUSSION
205	
206	Precipitation
207	
208	Figure 2 displays the correlation between annual precipitation and winter NAO (panel
209	A) and annual MO (panel B) indices for the period 1948-2008. The most effective
210	(seasonal or annual) index will be selected for each variable hereinafter. A relatively
211	high (anti)correlation (above 0.5) is observed in the Algeric-Balearic and Aegean and
212	northern Levantine sub-basins (more evident for MO index). However, only in ~60% of
213	the Mediterranean, precipitation and atmospheric indices are significantly correlated on
214	annual basis with a mean absolute correlation, corr , about 0.4 (see table 1). The
215	correlation increases in winter (or even the entire rainy period, October-March),
216	especially for MO index, with wide regions close to -0.6 and a mean absolute value of
217	0.48 (not shown). Up to 80% of the basin (except the South-Eastern sub-basin) is
218	significantly correlated in this season, when P is generally linked to storm-track activity
219	captured by atmospheric indices. In summer, most of precipitation across the
220	Mediterranean region is of convective origin and is poorly correlated with the large-
221	scale atmospheric variability.
222	
223	Approximate location of Figure 2

<u> </u>	<u> </u>	1
L	L	4

225	To further research the relationship between precipitation and the positive and negative
226	phases of the indices, we present now the composite analysis of Figure 3. During the
227	positive phase of the indices (panel A for NAO and C for MO), lower precipitation is
228	observed (up to -1.2 std anomalies). The NAO influence is more evident in the Western
229	Mediterranean and some areas of the Ionian whereas the MO is associated with a
230	noticeable reduction in precipitation in extensive areas of the whole basin. In the
231	negative phase (panels B for NAO and D for MO), higher precipitation is observed,
232	especially for the MO index, with values up to 1.2 std anomalies in the northern area.
233	NAO influence is not so evident in this state, the Levantine basin being the most
234	sensitive region.
235	
236	Approximate location of Figure 3
237	
238	Anti-correlation is expectable for P since the positive NAO phase (stronger dipole)
239	strengthens and modifies the orientation of prevailing westerly winds and associated
240	storm-track activity which cause increased precipitation over the northern Europe and
241	dry anomalies in the Mediterranean region (Hurrell, 1995; Serreze et al., 1997; Dai et
242	
	al., 1997). Roughly opposite conditions occur during the negative (weaker dipole) NAO
243	al., 1997). Roughly opposite conditions occur during the negative (weaker dipole) NAO phase. The relation with the MO index is highlighted in Figure 4, where sea level
243 244	al., 1997). Roughly opposite conditions occur during the negative (weaker dipole) NAO phase. The relation with the MO index is highlighted in Figure 4, where sea level pressure anomalies are shown both for its positive (panel C) and negative (panel D)
243 244 245	al., 1997). Roughly opposite conditions occur during the negative (weaker dipole) NAO phase. The relation with the MO index is highlighted in Figure 4, where sea level pressure anomalies are shown both for its positive (panel C) and negative (panel D) phases. The positive phase is associated with higher than average pressure over the
243 244 245 246	 al., 1997). Roughly opposite conditions occur during the negative (weaker dipole) NAO phase. The relation with the MO index is highlighted in Figure 4, where sea level pressure anomalies are shown both for its positive (panel C) and negative (panel D) phases. The positive phase is associated with higher than average pressure over the Mediterranean, especially over the northern and eastern areas and hence lower
243 244 245 246 247	 al., 1997). Roughly opposite conditions occur during the negative (weaker dipole) NAO phase. The relation with the MO index is highlighted in Figure 4, where sea level pressure anomalies are shown both for its positive (panel C) and negative (panel D) phases. The positive phase is associated with higher than average pressure over the Mediterranean, especially over the northern and eastern areas and hence lower precipitation is expected. In contrast, the negative phase is linked with anomalously low

249 Mediterranean that produces anomalously wet conditions over most of the

250 Mediterranean and, hence, negative correlation with P.

251

252	At decadal timescales (Figure 2C-D), the correlation considerably increases up to a
253	mean absolute value close to 0.6 (table 1) with extended regions (especially the Algeric-
254	Balearic and the Aegean and northern Levantine) highly correlated (~ -0.8) and a very
255	similar performance of both NAO and MO indices. This result confirms the importance
256	of the choice of a long period for budget studies in the Mediterranean, since the long
257	time scale effects of the indices must be taken into account because of their direct
258	implication on the climatic variables (Pettenuzzo et. al., 2010). The precipitation
259	anomalies resulting from the regression of precipitation with the NAO index (Figure 2E,
260	results for MO index are rather similar, not shown) indicates that, following positive
261	NAO index anomalies, the Mediterranean experiences a decrease in precipitation up to
262	150-200 mm/year in some regions, mostly restricted north of 35°N, a result already
263	mentioned by Mariotti et al. (2002).
264	
265	Approximate location of Figure 4
266	
267	Basin wide (Figure 2F), decadal to interdecadal variability of the Mediterranean
268	precipitation appears to be even more closely related to NAO and MO indices with
269	correlations of -0.8 and -0.78, respectively (table 1). In particular, the decrease from
270	mid-60s to late-80s corresponds to a switch from a low to a high state of the indices
271	(notice that -NAO and -MO indices have been plotted). These results are in good
272	agreement with those of Mariotti et al. (2002), who obtained (only for NAO) a

273	correlation of -0.51 and -0.84 for annual and decadal (5-year running means) variability,
274	respectively.
275	
276	Approximate location of Table 1
277	
278	Evaporation
279	
280	On annual basis, evaporation is poorly correlated with winter NAO (Figure 5A) and
281	only the northern Levantine sub-basin seems to be sensitive to large-scale atmospheric
282	forcing. More success is observed for the summer MO index (Figure 5B) that, although
283	with a moderate correlation (between -0.3 and -0.5 in most regions and a mean absolute
284	value of 0.37, see table 1) influences 70% of the Mediterranean. Composite analysis for
285	the positive (panel A) and negative (panel B) phases of the MO index is displayed in
286	Figure 4. During its positive phase, lower than average evaporation is observed,
287	especially in the Western basin with values up to -1 std anomaly in the Tyrrhenian basin
288	but also in the Levantine basin with values between -0.6 to -0.8 std anomalies. During
289	the negative phase, higher than average evaporation is observed elsewhere but
290	especially in the Levantine basin (up to 1.4 std anomalies).
291	
292	Anti-correlation is again expected since, with negative indices, anomalously low
293	pressure over the whole basin is observed (see Figure 4D) and colder and dryer air
294	masses from continental regions prevail, generating more severe weather conditions

- 295 over the Northern and Eastern Mediterranean. With this state, an intensification of
- 296 evaporative losses to the atmosphere is expected. Conversely, positive values of the
- 297 indices are associated with higher than average pressure over the Mediterranean and

298	North Africa (Figure 4C) that promote a shift of the wind trajectories toward lower
299	latitudes. Warmer and moister air masses are then conveyed toward the Mediterranean
300	leading to milder winters and a consequent decrease in the evaporative lost (Hurrell,
301	1995). But in autumn, when higher evaporation is observed (Mariotti et al., 2002;
302	Criado-Aldeanueva et al., 2012), the southern centre of NAO is rather far from the
303	Mediterranean and the regional MO index reflects more successfully local wind
304	trajectories that condition evaporation. It is interesting to notice that summer MO index
305	achieves the maximum correlation (although close values are obtained with the annual
306	MO index) because its positive and negative phases are associated with very different
307	sea level pressure anomaly patterns (Figure 4 C-D) during the year that determine the
308	wind trajectories and hence, evaporation. Since evaporation is higher in autumn and
309	winter, the atmospheric forcing in summer triggers, to a certain extent, its evolution in
310	the following months.
311	
312	Approximate location of Figure 5
313	
314	At decadal timescales, the correlation increases up to a mean absolute value about 0.55
315	(table 1) with higher values (-0.7 to -0.8) in the Levantine (both indices) and Tyrrhenian
316	(MO index) sub-basins (Figure 5C-D), again confirming the long time scale effects of
317	the indices on the climatic variables (Pettenuzzo et. al., 2010). But the difference
318	between NAO and MO influence remains evident (only 55% of the basin in sensitive to
319	NAO and more than 80% to MO). The evaporation anomalies resulting from the
320	regression with the indices (Figure 5E, only results for NAO index are shown) indicates

322 2002; Criado-Aldeanueva et al., 2012), experiences a conside
--

323 evaporation (250-350 mm/year) as a consequence of +1 NAO index anomalies.

324

325	Basin wide (Figure 5F), decadal to interdecadal variability of the Mediterranean
326	evaporation is also better correlated to the regional MO index (see table 1). For instance,
327	from mid 70s to early 90s, there is a considerable discrepancy between NAO index and
328	E variability, which seems to be better captured by MO index.

329

- 330 E P freshwater deficit
- 331

332 The annual freshwater deficit (E-P) is poorly correlated with atmospheric indices

333 (Figure 6A-B). Only a reduced area near Corsica and Sardinia and the Adriatic (for the

334 MO index) are positively correlated whereas the easternmost Levantine sub-basin is

335 negatively correlated. Seasonal correlations are more successful: for instance, winter

deficit is positively correlated with winter MO index with a mean value of 0.45 in most

337 of the Northern (above 35°N) Mediterranean (not shown), but winter only accounts for

338 20% of annual deficit (Criado-Aldeanueva et al., 2012).

339

340 At decadal timescales, a clear bi-modal pattern is observed both for NAO and MO

341 indices (Figure 6C-D): in the North-Central Mediterranean, E-P is positively correlated

342 (0.5-0.6) with the atmospheric forcing whereas in the Levantine sub-basin anti-

343 correlation is observed (close to -0.6). In accordance, regression analysis of NAO (and,

344 similarly MO, not shown) index with E-P also show an increment (decrement) in the

345 freshwater deficit in the Central (Levantine) sub-basins following +1 change (Figure

6E). This bi-modal behaviour can be explained based on the different sensitiveness of E

347	and P to the atmospheric forcing in those regions. In the Central basin, P is dominant
348	(compare Figures 2E and 5E) and changes in E-P follow those of –P (hence, positive
349	correlation is expected). In contrast, the Levantine sub-basin is highly sensitive to E (see
350	Figure 5E) and changes in E-P follow those of E (hence, negative correlation).
351	
352	Approximate location of Figure 6
353	
354	Mediterranean-averaged decadal to interdecadal E-P variability (Figure 6F) is not well
355	correlated with the large atmospheric forcing (~0.25), probably due to this bi-modal
356	pattern. The correlation doubles (0.5 and 0.48 for NAO and MO indices, respectively) if
357	only the period from 1970 is considered (when a switch from a low to a high state of the
358	indices seems to be followed by an increase in E-P), in agreement with the results of
359	Mariotti et al. (2002), who report 0.18 from NCEP (1949-98) and 0.55 from ERA
360	(1980-93) data. Longer time series are necessary to elucidate the large scale
361	atmospheric relationship with the water deficit.
362	
363	Net heat flux
364	
365	The net heat budget consists of two radiation components (solar shortwave radiation
366	absorbed by the sea and longwave radiation emitted by the sea) and two turbulent
367	contributions (latent and sensible heat fluxes). Annual net heat flux is moderately (mean
368	absolute value close to 0.4) correlated with MO index (Figure 7A) in most parts of the
369	Mediterranean (except the Alboran, Adriatic and north Aegean sub-basins). Similar
370	results are found for NAO index but more extended areas (especially the southern
371	Ionian) are not significantly correlated (Figure 7B). Decadal variations are more

372 successfully correlated with both indices (|corr|~0.6, see table 1) with higher values 373 close to -0.8 in the Levantine sub-basin (for NAO index, Figure 7C) and in the Central 374 Mediterranean (for MO index, Figure 7D). The composite analysis of Figure 8 reveals 375 that, during the positive phase of the indices (panel A for NAO and C for MO), ocean 376 heat losses are lower (especially for the MO index in most of the Western basin with 377 values up to -1 std anomalies). In the negative phase (panels B for NAO and D for MO), 378 ocean heat losses are higher. This anomaly is more evident in the Levantine and Aegean 379 sub-basins (higher than 1.2 std anomalies) under the negative MO phase.

380

381 The physical explanation for this is related to the wind trajectories that induce the sea 382 level pressure anomaly pattern in both MO phases: in the positive state (Figure 4C), the 383 dipole of high pressure anomaly over North Africa and Central Europe brings warmer 384 and moister air masses, especially to the Central and Western Mediterranean, that lead 385 to milder winters and a consequent heat loss decrease. In contrast, in the negative state 386 (Figure 4D), the dipole of anomalously low pressure over Central Europe and Turkey 387 brings colder and dryer air masses from continental regions towards the Mediterranean, 388 that merge in the Levantine and Aegean sub-basins, generating more severe weather 389 conditions and higher heat losses, especially in these areas.

390

391 -----Approximate location of Figure 7-----

392

393 As shown by Criado-Aldeanueva et al. (2012), fluctuations in the net heat flux closely

follow those of the latent heat, this contribution becoming the main source of

interannual variability. Since latent heat losses are directly related to evaporation,

396 similarity between Figure 5 and Figure 7 (and also between Figure 4A-B and Figure

397	8C-D) is expectable. However, better correlation is observed for net heat flux (see also
398	table 1) due to the other heat contributions that correlate well with the atmospheric
399	indices (especially the MO index, e.g. $ corr = 0.52$ and 0.55 for long and shortwave
400	radiation, respectively, in more than 80% of the basin at annual timescales). Notice that
401	the sign of the correlation is negative because we have selected net heat flux positive
402	toward the atmosphere (the same as evaporation). The net heat flux anomalies resulting
403	from the regression with the indices (Figure 7E for NAO index and very similar for MO
404	index, not shown) reveal that, similarly to evaporation, the Levantine sub-basin is the
405	most sensitive to changes in the large-scale atmospheric forcing.
406	
407	Basin wide (Figure 7F), decadal to interdecadal variability of the Mediterranean net heat
408	flux is better correlated to the regional MO index (table 1). As previously said, from
409	mid 70s to early 90s, there is a considerable discrepancy between NAO index and E
410	(and hence, net heat) variability, which seems to be better captured by MO index.
411	
412	Approximate location of Figure 8
413	
414	4 SUMMARY AND CONCLUDING REMARKS
415	
416	We have correlated interannual to interdecadal precipitation, evaporation, water deficit
417	(E-P) and total heat flux with climatic NAO and MO indices to explore the influence of
418	atmospheric forcing in the Mediterranean water and heat budgets variability. The
419	effectiveness of NAO and MO indices is rather similar for P and E-P but the regional
420	MO index has turned out to be a more successful indicator of interdecadal evaporation
421	and net heat flux (see table 1, in bold).

423 The indices exhibit considerable interannual and multi-decadal variability and 424 prolonged periods of both positive and negative phases of the pattern are common. The 425 positive phase of the indices is associated with higher than average pressure over the 426 Mediterranean and hence lower precipitation whereas the negative phase is linked with 427 anomalously low pressure over the whole basin that produces anomalously wet 428 conditions over most of the Mediterranean. Evaporation and net heat flux is related to 429 the wind trajectories that induce the sea level pressure anomaly pattern in both MO 430 phases (Figure 4 C-D): in the positive state, the dipole of high pressure anomaly over 431 North Africa and Central Europe brings warmer and moister air masses, especially to 432 the Central and Western Mediterranean, that lead to milder winters and a consequent 433 heat loss (and evaporation) decrease. In contrast, in the negative state, the dipole of 434 anomalously low pressure over Central Europe and Turkey brings colder and dryer air 435 masses from continental regions towards the Mediterranean, that merge in the 436 Levantine and Aegean sub-basins, generating more severe weather conditions and 437 higher heat (and evaporative) losses, especially in these areas. 438

439 The annual time series of NAO and MO indices are highly correlated (~ 0.6), this 440 indicating a close relationship between the indices due to the forcing of Atlantic low 441 systems on Mediterranean cyclogenesis (Trigo et al., 2002). The MO can be seen as an 442 oscillation of sea level pressure anomalies in the Central and Western Mediterranean, a 443 significant source of cyclogenesis. Since the occurrence of these cyclones is partially 444 linked with the activity of North Atlantic fronts governed by NAO, a high correlation is 445 expectable. In winter, the southern centre of the NAO is located closer to the 446 Mediterranean and, for this reason, the best correlation for all variables is always

447	observed for winter NAO index. But in summer and spring, the southern centre of the
448	NAO moves westward (Hurrell, 1995) and lower correlation is observed. In contrast,
449	the MO centre remains rather steady and it influences the Mediterranean all year round
450	(hence annual indices are preferred). Additionally, due to its effect in the Mediterranean
451	pressure field, the MO index captures to a certain extent the influence of other
452	independent modes of low-frequency atmospheric variability, especially the East
453	Atlantic (EA, $r = 0.43$ on annual basis) but also the East Atlantic-West Russia (EA-WR)
454	or the Scandinavian (SCAND) patterns during the cold part of the year (Papadopoulos
455	et al., 2012), and provides a valuable measure of the atmospheric impact on the basin,
456	then becoming, more suitable for monitoring long term water and (especially) heat
457	budgets variability.
458	
459	ACKNOWLEDGEMENTS
460	
461	This work has been carried out in the frame of the P07-RNM-02938 Junta de Andalucia
462	Spanish-funded project. JSN acknowledges a postgraduate fellowship from Conserjería
463	de Innovación Ciencia y Empresa, Junta de Andalucía, Spain. Partial support from
464	CTM2010-21229 (M. of Science and Technology) and P08-RNM-03738 (Junta de
465	Andalucía) Spanish-funded projects are also acknowledged. NCEP data have been
466	provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website
467	at <u>http://www.esrl.noaa.gov/psd/</u> .
468	
469	
1 07	

REFERENCES

474	Angelucci, M. G., N. Pinardi, and S. Castellari, 1998. Air-sea fluxes from
475	operational analyses fields: Intercomparison between ECMWF and NCEP analyses over
476	the Mediterranean area. Phys. Chem. Earth, 23, 569–574.
477	Artale, V., Calmanti, S., Malanotte-Rizzoli, P., Pisacane, G., Rupolo, W. and
478	Tsimplis, M. (2005). Mediterranean climate variablity. In: Lionello, P., Malanotte-
479	Rizzoli, P., Boscolo, R. (eds). Elsevier, pp 282-323.
480	Barnston, A.G. and Livezey, R.E., 1987. Classification, seasonality and
481	persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115,
482	1083-1126.
483	Bethoux, J.P, 1979. Budgets of the Mediterranean Sea: their dependence on the
484	local climate and on the characteristics of Atlantic waters. Ocean. Acta 2, 157-163.
485	Bethoux, J.P. and Gentili B., 1999. Functioning of the Mediterranean Sea: Past
486	and Present Changes realed to freshwater input and climatic changes. J. Mar. Syst. (20),
487	33-47.
488	Bethoux, J.P., Gentili, B. and Taillez, D. (1999). Warming and freshwater
489	budget change in the Mediterranean since the 1940s, their possible relation to the
490	greenhouse effect. Geophys. Res. Lett 25, 1023-1026.
491	Boukthir, M., and B. Barnier, 2000. Seasonal and inter-annual variations in the
492	surface freshwater flux in the Mediterranean Sea from the ECMWF re-analysis project.
493	J. Mar. Syst., (24), 343–354.
494	Bryden, H. L., and T. H. Kinder, 1991b. Steady two-layer exchange through the
495	Strait of Gibraltar. Deep-Sea Res., 38S, 445–463.

496	Bunker, A.F., Charnock, H., Goldsmith, R.A., 1982. A note on the heat balance
497	of the Mediterranean and Red Seas. J. Mar. Res. 40, 73-84, Suppl.
498	Castellari, S., Pinardi, N., Leaman K., 1998. A model study of air-sea
499	interactions in the Mediterranean Sea. J. Mar. Sys. 18, 89-114.
500	Conte, M., Giuffrida, A. and Tedesco, S., 1989. The Mediterranean Oscillation,
501	impact on precipitation and hydrology in Italy. Conference on Climate Water. Pub. of
502	the Academy of Finland, Helsinki, 121-137.
503	Criado-Aldeanueva, F., Soto-Navarro, J., García-Lafuente, J., 2012. Seasonal
504	and interannual variability of surface heat and freshwater fluxes in the Mediterranean
505	Sea: budgets and exchange through the Strait of Gibraltar. International Journal of
506	Climatology, 32, 286-302 doi: 10.1002/joc.2268.
507	Dai, A., Fung, I.Y., del Genio, A.D., 1997. Surface observed global land
508	precipitation variations during 1900-88. J. Clim 10, 2943-2962.
509	Garrett, C., Outerbridge, R., Thompson, K., 1993. Interannual variability in
510	Mediterranean heat and buoyancy fluxes. J. Climate 6, 900-910.
511	Gilman, C., Garrett, C., 1994. Heat flux parameterization for the Mediterranean
512	Sea: the role of atmospheric aerosols and constraints from the water budget. J. Geophys.
513	Res. 99 (C3), 5119-5134.
514	Gomis, D., Tsimplis, M.N., Martín-Míguez, B., Ratsimandresy, A.W., García-
515	Lafuente, J. and Josey, S.A., 2006. Mediterranean sea level and barotropic flow through
516	the Strait of Gibraltar for the period 1958-2001 and reconstructed since 1659. J.
517	Geophys. Res. 111, C11005 doi: 10.1029/2005JC003186.
518	Harzallah, A., D. L. Cadet, and M. Crepon, 1993. Possible forcing effects of net
519	evaporation, atmospheric pressure and transients on water transports in the
520	Mediterranean Sea. J. Geophys. Res., 98 (C7), 12 341-12 350.

- Hurrell, J.W., 1995. Decadal trends in the North Atlantic Oscillation regional
 temperatures and precipitation. Science 269(5224), 676-679.
- Hurrell, J.W. and van Loon, H., 1997. Decadal variations in climate associated
 with the North Atlantic Oscillation. Clim. Change 36, 301-326.
- 525 Hurrell, J.W., Kushnir, Y., Ottersen, G. and Visbeck, M., 2003. The North
- 526 Atlantic Oscillation: climate significance and environmental impact. Geophys. Monogr.

527 Ser 134, 279pp.

- Hurrell, J.W. and Deser, C., 2010. North Atlantic climate variability: the role of
 the North Atlantic Oscillation. J. Mar. Sys. 79, 231-244.
- 530 Jones, P.D., Jonsson, T. and Wheeler, D., 1997. Extension to the North Atlantic
- 531 Oscillation using early instrument pressure observations from Gibraltar and south-west
- 532 Iceland. Int. J. Climatol. 17, 1433-1450.
- 533 Jones, P.D., Osborn, T.J. and Briffa, K.R., 2003. Pressure-based measures of the
- 534 North Atlantic Oscillation (NAO), a comparison and assessment of changes in the
- 535 strength of the NAO and its influence on surface climate parameters. In The North
- 536 Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys.
- 537 Monogr. Ser., vol. 134, edited by J. W. Hurrell et al., pp. 51–62, AGU, Washington, D.
- 538 C., doi:10.1029/134GM03.
- 539 Kalnay, E and co-authors (1996). The NCEP/NCAR 40-year reanalysis project.
- 540 Bull. Amer. Meteor. Soc., 77:437-471.
- 541 Kutiel, H., Maheras, P. and Guika, S., 1996. Circulation indices over the
- 542 Mediterranean and Europe and their relationship with rainfall conditions across the
- 543 Mediterranean. Theor. Appl. Climatol. 54, 125-138.

544	van Loon, H. and Rogers, J.C., 1978. The see-saw of winter temperatures					
545	between Greenland and northern Europe. Part I: general descriptions. Mon. Weather					
546	Rev 106, 296-310.					
547	Maheras, P., Xoplaki, E. and Kutiel, H., 1999. Wet and dry monthly anomalies					
548	across the Mediterranean basin and their relationship with circulation 1860-1990.					
549	Theor. Appl. Climatol 64, 189-199.					
550	Mariotti, A., Struglia, M.V., Zeng, N., Lau, KM., 2002. The hydrological cycle					
551	in the Mediterranean region and implications for the water budget of the Mediterranean					
552	Sea. Journal of Climate 15, 1674–1690.					
553	Mariotti, A. and Arkin, P., 2007. The North Atlantic Oscillation and oceanic					
554	precipitation variability. Clim. Dyn 28, 35-51.					
555	Mariotti A, 2010. Recent Changes in the Mediterranean Water Cycle: A					
556	Pathway toward Long-Term Regional Hydroclimatic Change? Journal of Climate 23					
557	(6), 1513-1525.					
558	Matsoukas, C., Banks, A. C., Hatzianastassiou, N., Pavlakis, K. G.,					
559	Hatzidimitriou, D., Drakakis, E., Stackhouse, P. W., Vardavas, I., 2005. Seasonal heat					
560	budget of the Mediterranean Sea. J. Geophys. Res., 110, C12008,					
561	doi:10.1029/2004JC002566.					
562	May, P.W., 1986. A brief explanation of Mediterranean heat and momentum					
563	flux calculations. NORDA code 322, NSTL, MS 39529.					
564	Millot, C., Candela, J., Fuda, J.L. and Tber, Y. (2006). Large warming and					
565	salinification of the Mediterranean outflow due to changes in its composition. Deep-Sea					
566	Res. 53, 656-666.					

567	Papadopoulos, V., Josey, S.A., Bartzokas, A., Somot, S., Ruiz, S. and				
568	Drakopoulou, P. (2012). Large-scale atmospheric circulation favoring deep -and				
569	intermediate- water formation in the Mediterranean Sea. J. Climate 25, 6079-6091.				
570	Peixoto, J. P., M. De Almeida, R. D. Rosen, and D. A. Salstein, 1982.				
571	Atmospheric moisture transport and the water balance of the Mediterranean Sea. Water				
572	Resour. Res., 18, 83–90.				
573	Pettenuzzo, D., Large, W.G. and Pinardi, N. (2010). On the corrections of ERA-				
574	40 surface flux products consistent with the Mediterranean heat and water budgets and				
575	the connection between basin surface total heat flux and NAO. J. Geophys. Res. 115,				
576	C06022, doi: 10.1029/2009JC005631.				
577	Potter, R. and Lozier, S. (2004). On the warming and salinification of the				
578	Mediterranean outflow waters in the North Atlantic. Geophys. Res. Lett 31, L01202.				
579	doi: 10.1029/2003GL018161.				
580	Rogers, J.C. and van Loon, H., 1979. The see-saw of winter temperatures				
581	between Greenland and northern Europe. Part II: some oceanic and atmospheric effects				
582	in middle and high latitudes. Mon. Weather Rev 107, 509-519.				
583	Rogers, J.C., 1984. The association between the North Atlantic Oscillation and				
584	the Southern Oscillation in the northern hemisphere. Mon. Weather Rev. 112 1999-				
585	2015.				
586	Ruiz S., Gomis D., Sotillo M. G., Josey S. A., 2008. Characterization of surface				
587	heat fluxes in the Mediterranean Sea from a 44-year high-resolution atmospheric data				
588	set. Global and Planetary change, (63), 256-274.				
589	Sanchez-Gomez, E., Somot, S., Josey, S.A., Dubois, C., Elguindi, N. and Déqué,				
590	M. (2011). Evaluation of Mediterranean Sea water and heat budgets simulated by an				
591	ensemble of high resolution regional climate models. Clim. Dyn. 37, 2067-2086.				

592	Serreze, M.C., Carse, F., Barry, R.G. and Rogers, J.C., 1997. Icelandic low				
593	cyclone activity: climatological features, linkages with the NAO and relationships with				
594	recent changes in the northern hemisphere circulation. J. Clim 10(3), 453-464.				
595	Slonosky, V.C. and Yiou, P., 2001. Secular changes in the North Atlantic				
596	Oscillation and its influence on 20 th century warming. Geophys. Res. Lett. 28, 807-810.				
597	Supic, N., Grbec, B., Vilibic, I. and Ivancic, I., 2004. Long-term changes in				
598	hydrograpic conditions in northern Adriatic and its relationship to hydrological and				
599	atmospheric processes. Annales Geophysicae 22, 733-745.				
600	Suselj, K. and Bergant, K., 2006. Mediterranean Oscillation Index. Geophys.				
601	Res. Abstr. 8, 02145 European Geosciences Union.				
602	Trenberth, K.E., 1984. Signal versus noise in the Southern Oscillation. Mon.				
603	Weather Rev. 112, 326-332.				
604	Trigo, I.F., Bigg, G.R. and Davies, T.D. (2002). Climatology of cyclogenesis				
605	mechanisms in the Mediterranean. Monthly Weather Review 130 (3), 549-569.				
606	Tsimplis, M., Zervakis, V., Josey, S. A., Peneva, E.L., Struglia, M.V., Stanev,				
607	E., Teocharis, A., Lionello, P., Malanotte-Rizzoli, P., Artale, V., Tragou, E. and Orguz,				
608	T. (2006). Changes in the oceanography of the Mediterranean Sea and their link to				
609	climate variability. In: Lionello, P., Malanotte-Rizzoli, P., Boscolo, R. (eds). Elsevier,				
610	pp 226-281.				
611	Walker, G.T. and Bliss, W.E., 1932. World Weather V. Memories of the Royal				
612	Meteorological Society 44, 53-84.				
613					
614					
615					
616					

617 FIGURE CAPTIONS

618

619
Table 1: Mean absolute correlation, |corr|, at 95% significance level between annual
 620 and decadal (5-years running means) NAO and MO indices and P, E, E-P and net heat 621 flux (Q). The fraction of points significantly correlated is shown in brackets. The last 622 two columns display the correlation between the indices and the Mediterranean-623 averaged variables at decadal (5-years running means) timescales (time series of panel F 624 of Figures 2, 5-7). The best correlated seasonal index is indicated (w: winter, s: summer, 625 a: annual). Better results of MO index compared to NAO are highlighted in bold. 626 627 Figure 1: Map of the Mediterranean Sea. The main basins and sub-basins are indicated. 628 The MO pattern (contours) has been computed as the first PC of normalised sea level 629 pressure anomalies across the extended Mediterranean region (30°W-40°E, 30°N-60°N). 630 631 Figure 2: Correlation (95% significance) between precipitation (P) and large-632 atmospheric indices for the period 1948-2008. A) Annual P and winter NAO index; B) 633 Annual P and MO index; C) 5-year running means of P and winter NAO index; D) 5-634 year running means of P and MO index. E) Regression of P with winter NAO index at 635 decadal (5-year running means) timescales; F) Time series of 5-year running means of 636 winter -NAO (upper, green) and annual -MO (lower, red) indices and Mediterranean-637 averaged P. 638 639 Figure 3: Composites of precipitation standard anomalies associated to the positive 640 (upper quartile) and negative (lower quartile) phases of winter NAO and MO indices for

641 the 60-year 1948-2008 period. A) Positive winter NAO; B) Negative winter NAO; C)

642	Positive MO; D) Negative MO. Only the points where the results are statistically				
643	different from zero (according to a <i>t</i> -Student test at 95% significance) have been				
644	represented.				
645					
646	Figure 4: Composites of evaporation standard anomalies (panels A-B) and sea level				
647	pressure anomalies (hPa, panels C-D) associated to the positive (upper quartile, left				
648	panels) and negative (lower quartile, right panels) phases of summer MO index for the				
649	60-year 1948-2008 period. For evaporation, only the points where the results are				
650	statistically different from zero (according to a <i>t</i> -Student test at 95% significance) have				
651	been represented.				
652					
653	Figure 5: The same as Figure 2 for evaporation. The best correlated summer MO index				
654	has been selected for correlations with this variable.				
655					
656	Figure 6: The same as Figure 2 for freshwater deficit E-P. Notice that positive NAO				
657	and MO indices have been plotted in panel F.				
658					
659	Figure 7: The same as Figure 2 for net heat flux Q. The best correlated summer MO				
660	index has been selected for correlations with this variable.				
661					
662	Figure 8: Composites of net heat flux standard anomalies associated to the positive				
663	(upper quartile) and negative (lower quartile) phases of winter NAO and summer MO				
664	indices for the 60-year 1948-2008 period. A) Positive winter NAO; B) Negative winter				
665	NAO; C) Positive summer MO; D) Negative summer MO. Only the points where the				

- results are statistically different from zero (according to a *t*-Student test at 95%
- 667 significance) have been represented.

TABLES

	Annual means		5-years means		5-years Med-averaged	
	NAO index	MO index	NAO index	MO index	NAO index	MO index
Р	0.40 (54%)	0.45 (56%)	0.58 (82%)	0.56 (80%)	w -0.8	a -0.78
Е	0.37 (36%)	0.37 (68%)	0.53 (55%)	0.55 (83%)	w -0.48	s -0.63
E-P	0.38 (38%)	0.39 (38%)	0.50 (60%)	0.48 (59%)	w 0.25	a 0.22
Q	0.39 (55%)	0.37 (74%)	0.56 (83%)	0.59 (93%)	w -0.63	s -0.70

Table 1: Mean absolute correlation, |corr|, at 95% significance level between annual

 and decadal (5-years running means) NAO and MO indices and P, E, E-P and net heat flux (Q). The fraction of points significantly correlated is shown in brackets. The last two columns display the correlation between the indices and the Mediterranean-averaged variables at decadal (5-years running means) timescales (time series of panel F of Figures 2, 5-7). The best correlated seasonal index is indicated (w: winter, s: summer, a: annual). Better results of MO index compared to NAO are highlighted in bold.

The MO pattern (contours) has been computed as the first PC of normalised sea level

691 pressure anomalies across the extended Mediterranean region (30°W-40°E, 30°N-60°N).

Figure 3: Composites of precipitation standard anomalies associated to the positive
(upper quartile) and negative (lower quartile) phases of winter NAO and MO indices for

- the 60-year 1948-2008 period. A) Positive winter NAO; B) Negative winter NAO; C)
- 719 Positive MO; D) Negative MO. Only the points where the results are statistically
- 720 different from zero (according to a *t*-Student test at 95% significance) have been
- 721 represented.

Figure 4: Composites of evaporation standard anomalies (panels A-B) and sea level
pressure anomalies (hPa, panels C-D) associated to the positive (upper quartile, left
panels) and negative (lower quartile, right panels) phases of summer MO index for the
60-year 1948-2008 period. For evaporation, only the points where the results are
statistically different from zero (according to a *t*-Student test at 95% significance) have
been represented.

- ____

Figure 5: The same as Figure 2 for evaporation. The best correlated summer MO index

has been selected for correlations with this variable.

Figure 6: The same as Figure 2 for freshwater deficit E-P. Notice that positive NAO

index has been selected for correlations with this variable.

Figure 8: Composites of net heat flux standard anomalies associated to the positive
(upper quartile) and negative (lower quartile) phases of winter NAO and summer MO
indices for the 60-year 1948-2008 period. A) Positive winter NAO; B) Negative winter
NAO; C) Positive summer MO; D) Negative summer MO. Only the points where the
results are statistically different from zero (according to a *t*-Student test at 95%
significance) have been represented.